回帰分析

教師あり学習のタスクの1つ。対象データから未知の値を推測する。例えば、ある物件の家賃や将来の売上を推測することは、回帰にあたる。最も基本的な回帰のアルゴリズムは線形回帰である。線形回帰は、1つの変数を使って予測を行う単回帰と、2つ以上の変数を使って予測を行う重回帰に分けられる。


【みんなの投票】機械学習用語、あなたのお気に入りBEST3は?(3つまで回答可)
  • →(該当する答えがない)選択肢を新たに追加する

機械学習用語集

ディシジョンツリーの活用例とその重要性データセットの概要データマイニングとは
データ解析の手法とは?違いや用途について詳しく紹介しますハイパーパラメータとは何かバスケット分析とは
ランダムフォレストとはロジスティック回帰分析とは回帰分析:ビッグデータの解析において重要な手法
教師なし学習の手法とその有効性について教師あり学習の重要性と応用欠測値(欠損値)の定義とは?問題点は?
重回帰分析の活用事例と注意点とは線形回帰は、未知のデータを予測するための統計的な手法特徴量エンジニアリングの重要性と具体的な手順
半教師あり学習の基本手法とはダミー変数の重要性と使い方サポートベクターマシン(SVM)の特徴と使われ方
アンサンブル学習:異なる弱学習器を組み合わせて予測精度を向上させる手法データクレンジングは本当に大切なのか

Follow me!